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Abstract

A technique is described for filtering out the components of an NMR signal that have passed through an isotropic spin order term.
The method involves a coordinated cycle of three radiofrequency phase angles, where two of the phases correspond to the polar angles
describing the vertices of a regular polyhedron, and the third angle is stepped around a circle. The most economical isotropic filtering
scheme involves a 12-step phase cycle based on tetrahedral symmetry. The method is used to filter out NMR signals that have passed

through singlet populations in a solution NMR experiment.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Phase cycling is a ubiquitous method in NMR [1-9]. In
general, signals are accumulated from many similar NMR
pulse sequences, which differ only in the values of one or
more radiofrequency phases. Linear superposition of the
signals, multiplied by complex phase factors, is used to fil-
ter out classes of NMR signals with desirable properties,
and to suppress undesired NMR signals or experimental
artefacts. Techniques have been developed for designing
phase cycles, based on an analysis of the coherence transfer
pathways contributing to the NMR signals [1,2]. Many dif-
ferent phase cycling schemes have been designed, including
nested phase cycles [1,2], cogwheel phase cycles [3-6] and
multiplex phase cycles [7].

The coherence order of a spin order component de-
scribes its symmetry under rotations around a single axis,
conventionally the static magnetic field axis (the laboratory
frame z-axis). It is possible to extend this concept by clas-
sifying the nuclear spin order components according to

* Corresponding author. Fax: +44 23 8059 3781.
E-mail address: mhl@soton.ac.uk (M.H. Levitt).

1090-7807/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmr.2007.11.021

their behavior under the full group of rotations in three-
dimensional [8,9].

The natural language for a complete rotational classifi-
cation is that of irreducible spherical tensor operators (IS-
TOs), since these span the irreducible representations of the
full rotation group [10,11]. Irreducible spherical tensor
operators are described by two quantum numbers, called
the rank, denoted /, and the component index u, which
takes 21+ 1 values pe {—4,—A+1,...,+4}. For spin
operators, the component index of an irreducible spherical
tensor operator corresponds to its quantum order, also
known as the coherence order [1]. An ensemble of spin sys-
tems, each containing N coupled spins-1/2, can only sup-
port spin order terms for which both the rank 1 and the
quantum order p are less than or equal to N.

The isotropic spin order term with A = u = 0 is of partic-
ular interest since it is invariant to all three-dimensional
rotations of the nuclear spin polarizations. Traditional
phase cycles, which are based on the rotational properties
of spin order terms around the z-axis, cannot distinguish
this term from higher-rank components which also have
u = 0. As described below, isotropic spin order is of partic-
ular interest in solution NMR, since it is a manifestation of
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singlet spin populations, which can have very long lifetimes
in some circumstances [12-21].

The experimental classification of spin order terms
according to the full rotation group was first demonstrated
by Suter and Pearson, using a numerical fitting procedure
[8]. A more concise closed solution, called spherical tensor
analysis (STA), was developed recently [9] and applied to
the study of endohedral hydrogen-fullerene complexes
[22]. Spherical tensor analysis achieves a complete classifica-
tion of the spin order terms according to both 4 and p, up to
a known maximum rank. The experiment is very elaborate
and requires the linear superposition of signals from a large
number of independent experiments using different radio-
frequency phases and complex weighting coefficients.

As discussed below, full STA is an overkill if only the
isotropic component is required (A = u = 0). In most cases
the isotropic component of an NMR signal may be ex-
tracted using a phase cycle consisting of a relatively modest
number of angles, and which may be derived from the ver-
tices of a regular polyhedron. The choice of polyhedron de-
pends on the maximum rank that needs to be taken into
account for the spin system of interest, as shown in Table
1. If the maximum rank is 2, tetrahedral symmetry is suffi-
cient, and the phase cycle involves 12 independent experi-
ments. An application to singlet state NMR spectroscopy
is described below.

2. Isotropic filtering
2.1. Implementation

The general scheme for isotropic filtering of an NMR
signal is shown in Fig. 1. Suppose that a pulse sequence
consists of two blocks, denoted 4 and B, with overall
radiofrequency phases ¢, and ¢;. A reproducible initial
state is established before block 4 and the complex
NMR signal is detected in the interval after block B. In or-
der to filter out the part of the NMR signal that passes
through isotropic spin order at the junction of the two
blocks, two strong /2 pulses are inserted with phases ¢,
and ¢, (Fig. 1b). Isotropic filtering is implemented by cy-
cling the phases ¢,, ¢,, ¢, and ¢, in N steps, where

N = (dmax + 1V (1)

Here . is the highest rank of nuclear spin order with sig-
nificant intensity at the junction of sequences 4 and B, and
V is the number of vertices of a regular polyhedron chosen

Table 1

The type of polyhedron, the number of polyhedral vertices V, and the
number of phase cycle steps A/, required to implement isotropic filtering
on a spin density operator with maximum spherical rank Ap.y

Amax Polyhedron 14 Jmax + 1 N
2 Tetrahedron 4 3 12
3 Octahedron 6 4 24
4 Icosahedron 12 5 60
5 Icosahedron 12 6 72
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Fig. 1. General pulse sequence scheme for isotropic filtering of NMR
signals. (a) Phase cycle consisting of two blocks, 4 and B, before isotropic
filtering. (b) Isotropic filtering is implemented by inserting two 1/2 pulses
(small rectangles), with phase cycling of the phases ¢, and ¢, of the two
blocks, and of the phases ¢, and ¢, of the two inserted pulses.

according to the value of Ay.x, as specified in Table 1. If
Amax 18 larger than 5, solutions based on the platonic solids
no longer exist, and the Lebedev angle sets [9,23,24] may be
used.

The radiofrequency phase angles for phase cycle step j are
specified as follows. Consider the indices j, € {0,1,...,
V—1}and j, € {0,1,..., Anax }, defined through

Ji = floor{j/(Amax + 1)}
Jr =7 = J1(dmax + 1)

where floor(x) is the largest integer that is not greater than
x. The index j, counts through the V vertices of the polyhe-
dron, while the index j, counts Ay.x + 1 uniform steps
around a circle, for each of these vertices. The radiofre-
quency phases are given by

(2)

B40) = 8200+ 4,60) + 001) + s

$0) = 6.0 +0.01) o)
$2(j) = &, (1) + 7

$5(/) = ¢5(0)

where {0,(j,), ¢,(j,)} are the polar angles defining the j,th
vertex of the regular polyhedron. The angles ¢,(0) and
¢5(0) are the base phases for the two pulse sequence
blocks, which are determined by pulse sequence-specific
considerations, independent of the phase cycling scheme.

The NMR signals for the A phase cycle steps are added
together with the same weight. As shown below, this proce-
dure projects out the part of the NMR signal that derives
from isotropic spin order terms (4= p = 0) in existence
at the junction of the two pulse sequence blocks.

Explicit phase values for the cases Ay,x = 2 and 3 are gi-
ven in Tables 2 and 3. Graphical representations of the
phase values are shown in Fig. 2.

2.2. Theory

The NMR signal for step j =0 in the phase cycle
can be expressed as a superposition of spherical signal
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Table 2

Rotational Euler angles {o;,f;,7,} and explicit radiofrequency phases
{4 1, bs, ¢y} for a 12-step tetrahedral phase cycle, suitable for isotropic
filtering of an NMR signal with A,,x =2. The general pulse sequence
scheme in Fig. 1 is used, assuming that the starting phases are
¢,4(0) = ¢5(0) = 0. All angles are given in degrees

J o ﬁj Vi ¢4(/) &1 () $>()) ¢5())
0 0 0 0 0 0 180 0
1 0 0 120 120 0 180 0
2 0 0 240 240 0 180 0
3 0 109.47 0 109.47 109.47 180 0
4 0 109.47 120 229.47 109.47 180 0
5 0 109.47 240 349.47 109.47 180 0
6 120 109.47 0 229.47 229.47 300 0
7 120 109.47 120 349.47 229.47 300 0
8 120 109.47 240 109.47 229.47 300 0
9 240 109.47 0 349.47 349.47 60 0
10 240 109.47 120 109.47 349.47 60 0
11 240 109.47 240 229.47 349.47 60 0
Table 3

Rotational Euler angles {;,f;,7,} and explicit radiofrequency phases
{d4, b1, s, P} for a 24-step octahedral phase cycle, suitable for isotropic
filtering of an NMR signal with A, = 3. The general pulse sequence
scheme in Fig. 1 is used, assuming that the starting phases are
¢,(0) = ¢5(0) = 0. All angles are given in degrees

J % B; Y b40) $10) $:20) b50)

0 0 0 0 0 0 180 0
1 0 0 90 90 0 180 0
2 0 0 180 180 0 180 0
3 0 0 270 270 0 180 0
4 0 90 0 90 90 180 0
5 0 90 90 180 90 180 0
6 0 90 180 270 90 180 0
7 0 90 270 0 90 180 0
8 90 90 0 180 180 270 0
9 90 90 90 270 180 270 0
10 90 90 180 0 180 270 0
11 90 90 270 90 180 270 0
12 180 90 0 270 270 0 0
13 180 90 90 0 270 0 0
14 180 90 180 90 270 0 0
15 180 90 270 180 270 0 0
16 270 90 0 0 0 90 0
17 270 90 90 90 0 90 0
18 270 90 180 180 0 90 0
19 270 90 270 270 0 90 0
20 0 180 0 180 180 180 0
21 0 180 90 270 180 180 0
22 0 180 180 0 180 180 0
23 0 180 270 90 180 180 0

components [8,9], each representing the part of the signal
that passed through a spin order term with rank A and
quantum order g, i.e.

Fig. 2. Graphical representations of polyhedral phase cycles. The vertices
of the polyhedra have polar angles {0,¢} given by the Euler angles
{B,,2;}. The values of the third Euler angle y; are represented by the
spokes of a wheel attached to each vertex. (a) The 12-step tetrahedral
phase cycle for Zm.x = 2. (b) The 24-step octahedral phase cycle for
Amax = 3. (¢) The 60-step icosahedral phase cycle for A,.x = 4.

s(0,6) = 53,(0,1) (4)

The spherical components of the quadrature NMR signal
are given in general by

siu0,0) = Y (I | W (0)B|T3,)(T4,|41po) (5)
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where the Liouville-space bracket [25] is defined
(4]B) = Tr{4'B}. Here p, is the initial spin density opera-
tor, A is the superoperator for the first pulse sequence
block, B is the superoperator for the second pulse sequence
block, and W(t) is the time-dependent superoperator for
the spin evolution during the signal detection period. The
sum is taken over all spherical tensor operators 77, with
rank 1 and quantum order u. In general, there may be
several such operators, which are distinguished by the
label A.

The spherical tensor operators are defined by their
transformation properties under rotations:

Au Z D, uu (6)

w=—7i

where R(Q) is a rotation superoperator, (0 represents an
Euler angle triplet Q = {«, ff,7} and DW( ) is a Wigner
matrix element of rank 1. The rotation superoperator
may be expressed in terms of the individual Euler rotations
as follows:

R(Q) = R.(2)R,(B)R.(7) (7)

In many cases, the spherical signal components
5,.(0,¢) are negligible for 1 > An,. In spin systems of fi-
nite size, this bound is rigorous. For example, in ensem-
bles of independent systems, each containing N coupled
spins-1/2, the spherical components s;, vanish identically
for 1> N.

The aim of isotropic filtration is to project out the iso-
tropic signal component sy(0,¢) from the total signal
s(0,¢). This is achieved by performing a set of experiments
in each of which a different rotation, described by the Euler
angles Q; = {;, B,,7,}, is inserted between the two pulse se-
quence blocks. The signal from the experiment with index j
is given by

sty =Y _(I*|W(1)B

A

:ZD

Aot

RE@)ITA)(T, 4] py)
) ([ (1)B|T4,)(T4,|4]po) ®)

The signals from the A different experiments are multiplied
by a set of weighting factors and added together. The total
signal is given by

N-=1
= wis(ir0) ©)

where w; is the weighting factor used for the signal from the
jth experiment.

Suppose now that the angles €; and weights w; are cho-
sen so that the following condltlon is satisfied:

Z%

Egs. (8)—(10) may be combined to obtain:

= 5,05;@5 0 for 0 < A < )vmax (10)

5(1) 22 s00(1) (11)
which is the desired result.

The angle sets which satisfy the condition in Eq. (10) are
now derived. The polar angles {0,(j,), ¢ ,(j,)} describing
the vertices of the regular polyhedra listed in Table 1 fulfill
the following condition:

Z%

for 0 < 4 < Apmax

), 04(j1),0) = 0000

(12)
where the weights are uniform: w; = V™' The full condi-
tion in Eq. (10) is completed by allowing the third Euler an-
gle y; to step around a circle in Ana, + 1 steps, for every pair
of polar angles {6,(j,), #,(j,)}. This leads to the following
algorithm for the three Euler angles:

% = ¢V(j])
ﬁj = QV(jl)
" (13)

' Vi + 1)

where j, and j, are derived from the index j through Eq.
(2). R
The rotation R(Qj), where the Euler angles
= {a;, B;,7;} are given in Eq. (13), is implemented by
us1ng the phase specifications in Eq. (3). This may be
shown through the following argument:

R.(2)Ry(B)R.(7)) = Re(oy)R(~1/2)Ro(B))R
=R (ochrn) (m/2)
X R:(B; = )Ru(m/2)R: (7)) (14)

The R.(¢) rotations may be interpreted as overall radiofre-
quency phase shifts ¢ applied to all preceding pulse se-
quence elements, while the R.(m/2) rotations may be
implemented by strong radiofrequency pulses of flip angle
/2.

It should be noted that the numbers of phase steps in
Table 1 are not necessarily minimal. The construction prin-
ciple in Eq. (13) handles the angles o; and y; differently, and
allows complete freedom in the starting angle for 7, at each
vertex. This suggests the existence of shorter solutions, and
one has actually been discovered. We have recently shown
that a set of 60 Euler angles derived from the vertices of the
four-dimensional polytope called the 600-cell [26] has
Amax = 5 and is formally equivalent to the 72-angle icosahe-
dral set given in the last row of Table 1. This solution will
be described elsewhere.

The phase cycles for isotropic filtering of an NMR sig-
nal are considerably shorter than those required for full
spherical tensor analysis, given the same maximum rank.
In general, spherical tensor analysis out to rank /., re-
quires the use of Euler angle sets which integrate the Wig-
ner functions perfectly out to rank 2A,.x + 1, while
isotropic filtering only requires the integration to be com-
plete up to the rank Ayax.

(m/2)R-(7))
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3. Application to singlet NMR

In some cases, singlet nuclear spin states have long de-
cay time constants 7'y which may exceed the spin-lattice
relaxation time 7; by an order of magnitude or more
[12-21]. Such long-lived states have been used to study slow
diffusional motion and chemical exchange [16,18]. Applica-
tions are anticipated for transporting and storing hyperpo-
larized spin order generated by chemical reactions of
parahydrogen [19]. The existence of long-lived spin states
in systems of more than two coupled spins has been dis-
cussed [15,20,21].

Several different pulse sequences have been demon-
strated for populating nuclear singlet states in high mag-
netic field, starting from the Boltzmann population
distribution in thermal equilibrium. Zero-quantum coher-
ence [14,18] and two-spin longitudinal order [18] have both
been used. However, none of the sequences known to date
create a pure singlet population operator. There is always
contamination with other spin order terms, even when all
pulses are ideal. Some of these extra terms are zero-quan-
tum in nature and cannot be removed by conventional
phase cycling. As a result the slow singlet decay is contam-
inated with terms which decay more rapidly. This does not
cause problems if the singlet decay is much slower than that
of the other components, since the long-term behavior is
then dominated by the singlet decay. However in less favor-
able circumstances, interference from other contributions
hinders the estimation of the singlet decay time constant
Ts.

The component of the NMR signal that passes through
a singlet population term in the spin density operator may
be isolated by isotropic filtration using a polyhedral phase
cycle of the type presented above. This works because sin-
glet states have total spin quantum number / = 0 and are
invariant to rotations. The singlet population operator in
a 2-spin-1/2 system is a spherical tensor operator of rank
0, as follows:

1
Too = IS0 >< Sol =5 (KL + G =11 = 171;) - (19)
where the singlet state of a 2-spin-1/2 system is defined by:
1
So) = —=(laf > —|fo > 16
1S0) \f2(| B> —[po>) (16)

The unity operator, which represents a uniform population
distribution, is also a spherical tensor operator of rank 0.
By definition, any linear combination of the unity and
the singlet population operator is also an isotropic spheri-
cal tensor operator. Note that the isotropic operator in Eq.
(15) consists of a well-defined combination of zero-quan-
tum coherence and population operators. Conventional
phase cycling, which operators on the quantum order p
alone, cannot distinguish this term from isolated popula-
tions, or isolated zero-quantum coherences.

A spin ensemble of isolated 2-spin-1/2 systems only sup-
ports spin order terms with rank Ay, < 2. A 12-step tetra-

hedral phase cycle with A,.x = 2 is therefore sufficient for
isotropic filtering of a 2-spin-1/2 NMR signal.

An illustrative case is provided by the proton spin sys-
tem of citric acid (see Fig. 3a), which was studied before
[15]. The proton NMR spectrum is shown in Fig. 3b. The
proton A4’'BB’ system of citric acid consists of two indepen-
dent A B spin systems (one for each methylene group). Each
AB system supports a long-lived singlet state. The strongly
coupled nature of the 4B spin systems makes it difficult to
excite and observe singlet states cleanly.

The pulse sequences used to study the singlet states in
citric acid are shown in Fig. 4. The conventional pulse se-
quence in Fig. 4a employs a sequence of two m/2 pulses,
one © pulse, and three delays to populate the singlet state
via zero-quantum coherence [14]. Other methods may also
be used [18]. The singlet state is locked by a strong resonant
rf field during the long interval 74 in order to prevent mix-
ing with the short-lived triplet states. A further delay and a
n/2 pulse generate a NMR signal which gives an antiphase
signal pattern after Fourier transformation. Some exam-
ples are shown in Fig. 5(a—c). The amplitudes of the anti-
phase signals depend on the singlet population existing at
the end of the spin-locking period. The decay of the singlet
population may be studied by repeating the experiment for
several values of the locking interval z,.

All results were obtained using 50 mg of citric acid, pur-
chased from Sigma-Aldrich, and dissolved in 500 ul of
DMSO-ds. The solution was contained in a 5mm
Young-valve NMR tube and degassed by 6 pump-thaw cy-
cles. The experiments were performed on a 9.4 T Varian
Infinity+ spectrometer. The values of the delays used for
singlet excitation and observation were 7, = 15.5 ms,
T, =4.5ms, 13 = 6.2ms and 15 = 6.2 ms. The rf field dur-
ing the spin-locking interval t, provided a nutation fre-

a COOH

COOH

2.8 2.7 2.6
ppm

Fig. 3. (a) Molecular structure of citric acid. (b) Expanded region of the
"H NMR spectrum of citric acid dissolved in DMSO-ds at room
temperature.
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Fig. 4. (a) Pulse sequence for generating singlet population and observing its decay in the presence of a rf field. The singlet population is generated from
zero-quantum coherence by the first three pulses and delays t;, 1, and 73. The singlet spin-locking is implemented for an interval 74. The singlet population
is observed by converting it into observable magnetization by the delay s and the third ©t/2 pulse. (b) Implementation of isotropic filtering by inserting two
strong 1/2 pulses and subjecting the phases ¢, ¢,, ¢, and ¢, to a phase cycle.

a b
1s 1s
T T T T T T T T T T T T T T T T
50 25 0 -25 -50 50 25 0 -25 -50
Hz Hz

Fig. 5. (a) Spectral lineshapes obtained using the pulse sequence in Fig. 4a. (b) Spectral lineshapes obtained after isotropic filtration using the pulse
sequence in Fig. 4b. The value of the spin-locking interval 74 is shown on the plots.

quency of 1.0 kHz and was applied at the center frequency
of the AB signal pattern.

The spectral patterns obtained by Fourier transforming
the signals generated by the pulse sequence in Fig. 4a for
three different values of the locking interval 74 are shown in
the left column of Fig. 5. As may be seen, the form of the
spectra changes as 14 is increased. This indicates contamina-
tion of the signal at small values of 74 by a component with a
different spectral signature and a relatively short decay time
constant.

The experimental amplitude of the largest spectral peak
(second from left) is plotted against the spin-locking time 74
in Fig. 6a. The best fit to a single-exponential decay is
shown in the figure. The fit is imperfect, indicating the pres-
ence of more than one spin order term, with different decay
time constants.

Isotropic filtering was implemented by inserting two
n/2 pulses before the spin-locking interval, as shown in
Fig. 4b. A 12-step tetrahedral phase cycle for the two
n/2 pulses and the preceding pulse sequence block was
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Fig. 6. (a) Experimental decays of the citric acid signal amplitude as a
function of the spin-lock interval 74 for (a) the pulse sequence of Fig. 4a,
and (b) the pulse sequence of Fig. 4b, implementing the isotropic filter.
The best fits to single-exponential decays are shown by gray lines. Note
the departure of the single-exponential fit from the experimental amplitudes
in (a).

executed for every increment of 74, using the phase table
given in Table 2.

The spectral patterns for the isotropically filtered signal
are shown in the right column of Fig. 5. The spectra have a
cleaner antiphase appearance, which is well-conserved as 4
is increased. The decay of the signal amplitudes is shown in
Fig. 6b. The signal amplitudes are now fitted well by a sin-
gle-exponential decay with time constant of 1.95 s. We con-
clude that the tetrahedral phase cycle has eliminated the
interference from non-singlet terms, and that the singlet
state has a decay time constant of 7s = 1.95 s in this sys-
tem. This is about 5 times longer than the spin-lattice relax-
ation time 7, = 0.38 s, as estimated by a conventional
inversion-recovery experiment.

4. Conclusions

A technique for the isotropic filtering of NMR signals
has been introduced and validated. Isotropic filtering is
implemented by introducing two strong m/2 pulses into
the pulse sequence at the time point of interest, and subject-
ing these two pulses and the preceding ones to a phase cy-

cle. The phase angles are derived from the vertices of a
regular polyhedron. In the most economical version, a
12-step tetrahedral phase cycle is used. The method is gen-
eral and may be applied to any pulse sequence. In this re-
port, isotropic filtering is used to isolate NMR signals
passing through the long-lived singlet state of citric acid
in solution, allowing an accurate measurement of the sin-
glet decay, even in the presence of interference from other
signal components. The experiment is likely to be useful for
filtering out the signals from localized singlet states in bio-
molecules [18], suppressing the numerous signals from
other species.

The procedures described in this paper may be adapted to
other situations, for example the efficient computation of
powder averages [23,24], and the averaging of spatial interac-
tion tensors in the NMR of quadrupolar nuclei [27,28].
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